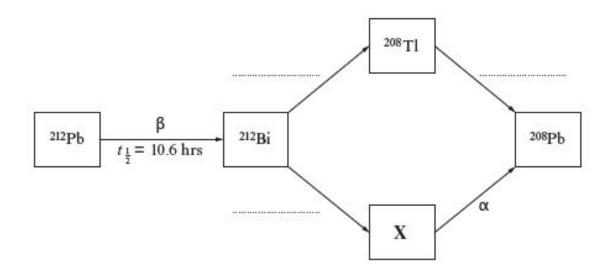
WJEC Chemistry A-level

1.2: Basic ideas about atoms

Practice Questions

Wales Specification

crude oil. Give two reasons why we cannot rely indefinitely on oil as a source of transport fuel.
[2]
(b) Many vehicle manufacturers around the world have made the development of alternative fuels a priority. One such fuel being studied is hydrogen.
Its main advantage is that the only waste product is water, however hydrogen does not occur naturally on Earth. It is produced by passing an electric current through water.
(i) A leading car manufacturer said,
"Cars powered by hydrogen will be pollution-free".
Give two reasons why this is not necessarily true.
[2] QWC [1]
(ii) A spokesperson for a safety group said,
"Hydrogen can burn explosively. It must not be used in cars unless it is 100 % safe". State, giving a reason, whether you agree with this.
[1]
(c) The first line in the visible atomic emission spectrum for hydrogen has a wavelength of 656 nm, while that for helium has a wavelength of 707 nm. State, giving a reason, which line has
(i) the higher frequency,
[1]


(ii) the higher energy.
]
(d) The first ionisation energy of helium is 2370 kJ mol-¹ while that of neon is 2080 kJ mol-1. Explair why neon has a lower first ionisation energy than helium.
(b) Another mobile was in radion, the many stable instance 222Dm has a half-life of 2.0 days, decays by
(b) Another noble gas is radon. Its more stable isotope 222 Rn has a half-life of 3.8 days, decays by α -emission and is responsible for the majority of the public exposure to ionising radiation.
(i) Give the symbol and mass number of the atom formed by the loss of one α -particle from an atom of 222 Rn.
]
(ii) Explain why doctors are concerned that an over-exposure to radon may cause lung cancer.
]
(Tatal 4)
(Total 12

The metal lead was one of the first in common use and even as far back as two thousand years ago, tens of thousands of tonnes of the metal were being produced every year in the Roman Empire. It is still in common use today, although many of its former uses have declined due to the toxic nature of the element.

(a)		d is commonly extracted from lead(II) sulfide, PbS. Initially this ore is heated in a sed supply of air to produce lead(II) oxide, PbO, giving off sulfur dioxide gas, SO ₂ .
		2PbS + 3O ₂ → 2PbO + 2SO ₂
	If 20 form	kg of lead(II) sulfide were heated in air, calculate the mass of lead(II) oxide ned. [3]
		Mass of lead(II) oxide formed =kg
(b)	Met	allic lead can then be obtained from lead(II) oxide by one of two methods:
	Met	hod 1: Reduction with a fresh supply of lead(II) sulfide in the absence of air
		$2PbO + PbS \longrightarrow 3Pb + SO_2$
	Met	hod 2: Reduction by carbon monoxide in a blast furnace
		PbO + CO \longrightarrow Pb + CO ₂
	(i)	Both methods for producing lead release waste gases. Give an environmental problem associated with each of these gases. [2]
		Sulfur dioxide, SO ₂
		Carbon dioxide, CO ₂
	(ii)	The atom economy for producing lead by method 1 is 90.7%.
	(11)	Calculate the atom economy for producing lead by method 2. [2]

11.	advantages and disadvantages of different routes to produce the same product. State, giving a reason, which of the two alternative methods would be considered to have the more advantageous atom economy. [1]

(c) Lead has a wide range of isotopes, some of which are stable and others that are radioactive. Radioactive lead-212 decays to eventually form the stable isotope ²⁰⁸Pb. This process involves the decay of ²¹²Pb into ²¹²Bi followed by two alternative routes that both lead to ²⁰⁸Pb, as shown in the scheme below.

 Give the correct symbol and mass number of the isotope indicated by X on the scheme above.

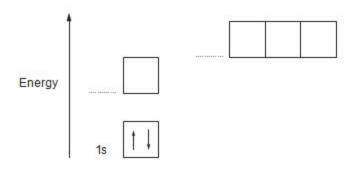
(ii) Two arrows have been labelled with α and β.
 Label the remaining three arrows to indicate the nature of the radioactive decay occurring in each step.

(iii)	radioactive de	ole to identify whether γ-rac cay processes from the inf	ormation given in the sch	eme.
		meant by γ-radiation an iven in the scheme.	d why it cannot be iden	tified from
(iv)	A sample of 24 of ²¹² Pb that w	4 mg of ²¹² Pb was allowed t ould remain after this tim	o stand for 31.8 hours. Cal	culate the
Note		lead consists of a mixtur	e of stable isotopes which	
207Pb	and 208Pb. Th	ne relative amounts of the	ese isotopes can vary be	
207Pb	and 208Pb. Th		ese isotopes can vary be	
207Pb	and ²⁰⁸ Pb. The abunda	ne relative amounts of the	ese isotopes can vary be ample is given below.	
207Pb	and ²⁰⁸ Pb. The abunda	ne relative amounts of the ance of each isotope in a sa	ese isotopes can vary be ample is given below. Percentage abundance	
207Pb	Isotope	Relative isotopic mass	ese isotopes can vary beample is given below. Percentage abundance 25.48%	
207Pt sour	Isotope 206Pb 207Pb 208Pb	Relative isotopic mass 206.0	Percentage abundance 25.48% 22.12%	tween diff
207Pt sour	Isotope 206Pb 207Pb 208Pb	Relative isotopic mass 206.0 207.0	Percentage abundance 25.48% 22.12%	tween diff

Total [19]

3. This question is about atomic structure.
(a) Give the full electronic configuration of a nitrogen atom and use this to describe the way in which electrons are arranged in atoms.
[4] QWC [1
(b) Describe the main features of the atomic emission spectrum of hydrogen in the visible region. Explain how these features arise and how their interpretation provides evidence for energy levels in the atom.
[6]
(c)(i) Hydrogen has a first ionisation energy of 1312 kJ mol-1. Explain why helium has a higher first ionisation energy than hydrogen
[2

						[2]
/iii\The table below gives the first	throo io	aiaatian a	noraina for	horon o	nd nataonium	
(iii)The table below gives the first	triree ioi	nisation e	nergies for	poron a	nd potassium.	
Γ.		Ionisati	ion energy/k	J mol ⁻¹	7	
E	lement	1st	2nd	3rd		
	В	800	2420	3660		
	K	419	3051	4412		
(II) Write an equation to represen	t the sec	cond ionis	sation ener	av of pot	assium	
()				3 7 - 1		F.4.7
						[1]
(III) State how the first three ionis	ation en	eraies of a	calcium wo	ould diffe	from those of potassi	um.
(iii) State New the mot three forms		orgioo or v	saiolani we	ara amo	nom mode of potago.	
						[2]
					<i>1</i> 7	Total 19)


(a)	Mag	Magnesium has three stable isotopes ²⁴ Mg, ²⁵ Mg and ²⁶ Mg.							
	(i)	State the number of protons present in an atom of ²⁴ Mg.	[1]						
	(ii)	Deduce the number of neutrons present in an atom of ²⁶ Mg.	[1]						
	(iii)	In order to calculate the relative atomic mass of magnesium, what wo to know in addition to the relative mass of each isotope?							
(b)	Mag	nesium also has a radioactive isotope ²⁸ Mg which has a half-life of 21 ho	ours.						
	(i)	If you started with 2.0 g of ²⁸ Mg, calculate the mass of this isotope rema							
		or nouis.	[1]						
	 (ii)	Name one useful radioactive isotope and briefly describe how it is used in industry or analysis.							
		Name one useful radioactive isotope and briefly describe how it is used in	n medicine, [2]						
ionise	(ii)	Name one useful radioactive isotope and briefly describe how it is used in industry or analysis.	n medicine, [2]						

4. Magnesium is best known for burning with a characteristic brilliant white light, however in industry

(ii) Giv	e a rea	ason w	hy it is nece	ssary to io	nise the mag	gnesium a	atoms in t	the sampl	e.		
											[1]
											_
(iii) Sta	ite hov	w the id	ons of magn	esium are	separated.						
											[1]
											_
(d)	_	nesiui pound		with nitro	ogen formi	ing mag	nesium	nitride,	which	is an	ionic
					sent electro itride ion, l		plete th	e boxes	below	to show	w the
70	1s		2s	99	2p	_0 0	3s	<u> </u>	3p		
			8	31					ľ		
ı.		I,		1							
(e)	Mag	nesiu	m nitride r	eacts with	water to f	orm mag	nesium	hydroxio	de and a	mmoni	a.
	9	٦,	[],,,	***			
	8	N	Mg_3N_2 +	н	2O ——	•	Mg(C)H) ₂ +		NH ₃	
	(i)	Bala	ance the eq	uation ab	ove.						[1
	(ii)				mass of r						5 g of

(Total 14)

5. (a) Electrons are arranged in energy levels. The diagram below shows two electrons in the 1s level in a nitrogen atom.

Complete the diagram for the electrons in a nitrogen atom by labelling the sub-shell levels and showing how the electrons are arranged.

[2]

- (b) Nitrogen forms several oxides.
- (i) An oxide of nitrogen contains 25.9 % by mass of nitrogen. Calculate the empirical formula of this oxide.

[2]

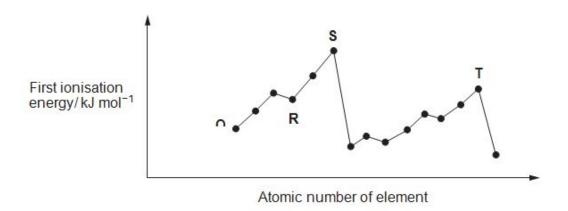
(ii) Dinitrogen oxide is formed when ammonia is oxidised

Balance the equation above

	(iii)	Nitrogen dioxide is for	med when calcium ni	itrate decomposes.	
		2Ca(NO ₃) ₂ (s)	2CaO(s) +	$4NO_2(g) + O_2(g)$	
		Calculate the total vo which would be produ	lume of gas, measur ucedwhen 0.886g of	red at room temperature ar calcium nitrate decompose	nd pressure, s. [3]
		[1 mol of gas occup	pies 24.0 dm³ at room	ntemperature and pressure	l
				12.1000000	. 2
				Volume =	dm³
(c)	Hydr	rated calcium nitrate ca	n be represented by t	he formula Ca(NO ₃) ₂₋ xH ₂ O	80
	A 6.0	04g sample of Ca(NO ₃)	_{2.} xH ₂ O contains 1.84	g of water of crystallisation	-
	Calc	ulate the value of x in C	a(NO ₃) ₂₋ xH ₂ O. You n	nust show your working.	[3]
				x =	

State the similar	rities and differences in the composition of these specific isotopes.	[2]
(b) The first two	electronic energy levels in a hydrogen atom are shown on the diagram.	
	n = ∞	
	n = 2	
	n = 1	
(i) Complete the	diagram to show energy levels $n = 3$, $n = 4$ and $n = 5$.	
(ii) Mark with an	arrow the energy change corresponding to the ionisation energy of hydrogen.	[1]
		[2]

(c) A student said that the ionisation energy of hydrogen could be calculated using the Balmer Series of lines.


(i) In which part of the electromagnetic spectrum doe	es the Balmer Series appear?
---	------------------------------

[1]

(ii) Explain whether or not this student was correct.

[2]

(d) The diagram shows part of a plot of the first ionisation energy of elements against their atomic numbers. Letters **Q-T** do **not** represent the symbols of the elements.

(i) Write the equation for the change occurring for the first ionisation energy of element **Q**.

[1]

(ii) In which group of the Periodic Table is element ${\bf R}$ found?

[1]

(iii) Explain why the first ionisation energy of ${\bf S}$ is greater than that of ${\bf T}$.

[3] QWC [1]

(Total 14)

7. (a) The electronic structures of five atoms, **A** to **E**, are listed below. Arrange these atoms in order of increasing molar first ionisation energy.

[2]

Atom	A	В	C	D	E
Electronic structure	1s ²	1s ² 2s ²	1s ² 2s ² 2p ¹	1s ² 2s ² 2p ³	1s ² 2s ² 2p ⁶

lowest	***************************************	highest
--------	---	---------

(b) State, giving a reason for your choice, which **one** of the following gives the first four ionisation energies for silicon, Si.

[2]

		Ionisation ene	rgy / kJ mol ⁻¹	
	1st	2nd	3rd	4th
W	496	4563	6913	9544
X	578	1817	2745	11578
Y	738	1451	7733	10541
Z	789	1577	3232	4356

Letter	 			
Reason	 	 	 	•

(c) By inserting arrows to represent electrons, complete the boxes below to show the electronic configuration of a sulfur atom.

1s 2s 2p 3s 3p [1]

8.

- (a) Write the letter corresponding to the correct electronic structure of an atom that is a member of the d-block in the box below. [1]
 - A 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p¹
 - $\mathbf{B} = 1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$
 - C 1s²2s²2p⁶3s²3p⁶3d⁶4s²
 - $D \quad 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$
- (b) Write the letter corresponding to the electronic structure of the atom with the highest first ionisation energy in the box below. [1]
 - $\mathbf{A} = 1s^2 2s^2 2p^6 3s^2 3p^6$
 - **B** $1s^22s^22p^6$
 - $C = 1s^2 2s^2 2p^6 3s^2$
 - $D \quad 1s^2 2s^2 2p^6 3s^2 3p^4$

(Total 2)

9.

(a)	Give	the elec	tron	confi ınds	ontains potassium ions, K^+ . guration of a potassium atom and use this to explain why monomorphism contain the potassium ion.	ost [2
(b)	the n He n potas	naximur neasured ssium h noticed t Calcul	n rise 2500 ydrox hat th	in t cm ³ d ide t e ten	make 250 cm ³ of a solution of potassium hydroxide and to recommend that occurred as it dissolved. of water in a glass beaker and then added 7.01 g (0.125 mol) of solution this, with stirring. Apperature rose from 20.2 °C to a maximum of 25.0 °C. lar enthalpy change of solution of potassium hydroxide by use	lid
		the for	rmula	ΔΗ	$= -\frac{\text{mc}\Delta T}{n}$	
		where	c ΔT n	= = =	8 · · · · · · · · · · · · · · · · · ·	
		You sh	nould	show	the units in your answer.	[3]

se the information given to suggest and explain two factors that might produce a different result	
	[2]
1	
2	

(ii) Michael's measurements produced a value for the enthalpy of solution of potassium hydroxide

that was different to the literature value.

	v.			equation f				
	2K0	OH + CO ₂ _	→ K ₂ CO ₃	+ H ₂ O				
					hydroxide	. Analysis	showed th	ıat
(i)						273		[1]
(ii)								
	[1 mol of c	arbon dioxide h	as a volume	e of 24.0 di	m³ under th	ese condi	tions]	
			Volu	me of carb	on dioxide	=	(lm ³
ii)	Calculate volume.	the percentage	of carbon	dioxide i	n the gas	mixture,	in terms	of [2]
		[10	$dm^3 = 0.00$	1 m ³]				
		ii) Calculate [1.0 m ³ of a gas m [2.0 mol of pota [3.0 mol of pota [4.0 mol of pota [5.0 mol of a gas m [6.0 mol of a gas m [7.0 mol of a gas m [8.0 mol of a gas m [8.0 mol of a gas m [8.0 mol of a gas m [9.0 mol of a gas m [1.0 mol of pota [1.0 mol of a gas m [1.0 mol of pota [1.0 mol of a gas m [1.0 mol	ii) Calculate the percentage volume.	2.0 m³ of a gas mixture was passed through 1.50 mol of potassium carbonate had been (i) State the number of moles of carbon potassium carbonate. (ii) Calculate the volume of carbon diox carbonate. [1 mol of carbon dioxide has a volume of carbon	2.0 m³ of a gas mixture was passed through potassium 2.0 m³ of a gas mixture was pass	(i) State the number of moles of carbon dioxide necessary to potassium carbonate. (ii) Calculate the volume of carbon dioxide that produced 0 carbonate. [1 mol of carbon dioxide has a volume of 24.0 dm³ under the state of carbon dioxide in the gas volume.	2.0 m³ of a gas mixture was passed through potassium hydroxide. Analysis 2.50 mol of potassium carbonate had been formed. (i) State the number of moles of carbon dioxide necessary to produce potassium carbonate. (ii) Calculate the volume of carbon dioxide that produced 0.050 mol carbonate. [1 mol of carbon dioxide has a volume of 24.0 dm³ under these conditions of the carbon dioxide in the gas mixture, volume.	2.0 m ³ of a gas mixture was passed through potassium hydroxide. Analysis showed the 1.50 mol of potassium carbonate had been formed. (i) State the number of moles of carbon dioxide necessary to produce 0.050 mol potassium carbonate. (ii) Calculate the volume of carbon dioxide that produced 0.050 mol of potassium carbonate. [1 mol of carbon dioxide has a volume of 24.0 dm ³ under these conditions] Volume of carbon dioxide =

Percentage of carbon dioxide =%

(d) Scientists have commented that 'an increase in the amount of carbon dioxide dissolved in seawater will cause problems for animals whose shells are composed of calcium carbonate'.

$$CO_2(aq) + H_2O(1) + CaCO_3(s)$$
 \implies $Ca^{2+}(aq) + 2HCO_3$ $^-(aq)$

	FO1 - 014/0 - 113
	[3] QWC [1]
	(Total 15)
10. This question is about atomic structure.	
(a) Give the full electronic configuration of a nitrogen atom and use this to describe the electrons are arranged in atoms.	way in which
	[4] QWC [1]
(b) Describe the main features of the atomic emission spectrum of hydrogen in the visil Explain how these features arise and how their interpretation provides evidence for enetthe atom.	
	[6]

(c)(i) Hydrogen has a ionisation energy than		gy of 1312	2 kJ mol ⁻¹ .	Explain wh	ny helium has	a higher first
						[2]
(ii) Beryllium and mag higher first ionisation e			of the Perio	dic Table.	Explain why b	eryllium has a
						[2]
(iii) The table below gi	ves the first three ic		energies for ion energy/l 2nd 2420 3051		nd potassium.	
(iii) The table below gi	Element - B K	lonisat 1st 800 419	2nd 2420 3051	3rd 3660 4412	nd potassium.	[1]
	Element - B K	lonisat 1st 800 419	2nd 2420 3051	3rd 3660 4412	nd potassium.	[1]
	Element - B K	1st 800 419 3+ ions ar	2nd 2420 3051 e unlikely t	3rd 3660 4412 o exist.		[1]

(Total 19)

11. In 2011 a man was detained at Moscow Airport when he tried to smuggle samples containing a radioactive isotope of sodium, ²² Na, onto an aircraft.
(i) This isotope is made from an aluminium isotope by loss of an α -particle. State what is meant by an α -particle.
[1]
(ii) ²² Na decays by the loss of a positron. This may occur by the breakdown of a proton into a neutron and a positron, giving the product, ^b X.
Deduce the mass number (b) and the chemical symbol (X) of this product. [2]
b
X
(iii) The half-life of the isotope ²² Na is 2.6 years. The mass of a sample of this isotope is 48 mg.
Calculate the time taken for the mass of ²² Na to fall to 3 mg
[1]
Time taken =years
(b) The visible emission spectrum of sodium shows a strong yellow-orange line at a wavelength of 589 nm and a weaker green line at 569 nm.
Complete the sentences below by using the words higher or lower as appropriate.
The frequency of the green line at 569 nm isthan the frequency of the yellow-

)	Trona is a naturally-occurring 'sodium carbonate' mineral. It has the formula Na ₂ CO ₃ .NaHCO ₃ .2H ₂ O.		
	(1)	Show that the relative molecular mass of trona is 226.	[1]
	- 20		
	(ii)	On heating, trona loses water and carbon dioxide giving sodium carbonate.	
		$2[Na_2CO_3.NaHCO_3.2H_2O](s) \longrightarrow 3Na_2CO_3(s) + CO_2(g) + 5H_2O(1)$	
		Calculate the atom economy of this reaction, assuming that sodium carbonate the only required product.	is [2]
		Atom economy =	%
	(iii)	The above reaction is used commercially to obtain sodium carbonate.	
		Suggest one environmental disadvantage of this reaction as indicated by the equation, and state what could be done to overcome this problem.	he [2]

(d)	When sodium carbonate is added to water, some of the carbonate ions react with the water to give an alkaline solution.
	$CO_3^{2-}(aq) + H_2O(1) \implies HCO_3^{-}(aq) + OH^{-}(aq)$
	(i) Explain why this reaction is considered to be an acid-base reaction. [2]
	(in the attribute and the second and
	(ii) The pH of a sodium carbonate solution is 11.4. How would you explain the meaning of the pH scale to a member of the public? [3]
	T105
	Total [15]